Orthogonally Additive and Orthogonality Preserving Holomorphic Mappings between C*-Algebras
نویسندگان
چکیده
منابع مشابه
Orthogonality preserving mappings on inner product C* -modules
Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set o...
متن کاملOrthogonally Additive Polynomials on C*-algebras
Let A be a C*-algebra which has no quotient isomorphic to M2(C). We show that for every orthogonally additive scalar nhomogeneous polynomials P on A such that P is Strong* continuous on the closed unit ball of A, there exists φ in A∗ satisfying that P (x) = φ(x), for each element x in A. The vector valued analogue follows as a corollary.
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملHolomorphic Mappings Preserving Minkowski Functionals
We show that the equality m1(f(x)) = m2(g(x)) for x in a neighborhood of a point a remains valid for all x provided that f and g are open holomorphic maps, f(a) = g(a) = 0 and m1, m2 are Minkowski functionals of bounded balanced domains. Moreover, a polynomial relation between f and g is obtained. Next we generalize these results to bounded quasi-balanced domains. Moreover, the main results of ...
متن کاملStability and hyperstability of orthogonally ring $*$-$n$-derivations and orthogonally ring $*$-$n$-homomorphisms on $C^*$-algebras
In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and Rassias-type stability of the conditional of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras. As a consequence of this, we prove the hyperstability of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2013
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2013/415354